

Sports Nutrition

Dr. Chris Grant B.Sc., D.C., RCCSS(C) Resident

Reputable Resources

- Journal of the International Society of Sport Nutrition (JISSN)
- Yann Le Meur
 - Senior editor of the British Journal of Sports Medicine
 - YLMSportScience
- Asker Jeukendrup
 - Mysportscience.com

Questions, Concerns & Interests

Canada's Food Guide

Limit foods high in sodium, sugars or saturated fats

What is the right diet for you?

How Named Diets Work for Weight Loss

Diet Name	Short Description	How it Works
Low Carb	Eat fewer carbs and more foods rich in protein and fats	
Ketogenic	Eat almost no carbs, some protein and mostly fats	
Low Fat	Avoid foods high in fats and eat mostly protein and carbs	
Intermittent Fasting	Restrict your eating period to only a few hours every day	
Weight Watchers	Points based system to help with portion control	
Paleo	Eat only minimally-processed "paleolithic" foods	

Caloric Deficit

There is a difference between eating for performance & weight loss

Creating an Adaptation

Sports Nutrition Pyramid

Carbohydrates

Substrate Utilization

Carbohydrates

- Monosaccharides
 - Glucose, fructose
- Disaccharides
 - Sucrose, lactose
- Oligosaccharides
 - Maltodextrin
- Polysaccharides
 - Amylopection, glycogen

Glycogen Stores

- Muscle Glycogen
 - 400g
- Liver Glycogen
 - 90-110g
- Blood Glucose
 - 2-3g

Gastric Emptying

- ↑ exercise intensity = ↓ gastric emptying

Carbohydrate Supplements

Depending on Race Duration

Questions???

Post-Training Fueling

- Carbohydrates
- Protein

Glycogen does not replenish rapidly to pre-exercise levels!

It takes at least 24 hours to replenish muscle glycogen.

- Rapid Phase
 - 30-60 minutes post-exercise
 - Not insulin dependent
- Slow Phase
 - Insulin dependent

Post-Exercise Protein Consumption

- Post-exercise ingestion of protein stimulates muscle protein synthesis (aka. building muscle)
- This appears to be less important in people who consume 20-40g of protein every 3-4 hours
- The general approach
 - Consume a post-exercise protein source

Carbohydrate Loading

MANIPULATION OF DIET & TRAINING EFFECT ON GLYCOGEN STORAGE

Reference: Burke, van Loon & Hawley, JAP 2016

Designed by @YLMSportScience

- RDA = 0.8 g/kg/d
- Athletes = 1.4-2.0 g/kg/d
- 20-40 g/intake
- Ingest every 3-4 hours

• Leucine

How Much Protein?

- 80kg male
- 0.8g/kg/day
 - 64g/day
- 2.0g/kg/day
 - 160g/day

26 Naughton 2016

By Longland et al. AJCN, March 2016

HIGHER PROTEIN (2.4 G/KG/D) DURING SEVERE CALORIC RESTRICTION PROMOTES LEAN MASS GAIN AND FAT MASS LOSS

Dietary supplements and the high-performance athlete IOC consensus statement

Reference: by Maughan et al. BJSM 2018

Designed by @YLMSportScience

- Mechanism
 - ↑ endorphin release
 - \uparrow neuromuscular function
 - ↑ alertness
 - \downarrow RPE during exercise

- Improved performance in endurance and highintensity exercise
- 3-6mg/kg, consumed 60 minutes before competition
- 240-480mg of caffeine
 - 2-5 cups of coffee
 - 1-2 caffeine pills

- Safe & effective
- Naturally occurring
 - Phospho-creatine pathway
- Supplementing increases creatine stores by 30%

PERFORMANCE

HIGH-INTENSITY SPORTS RESISTANCE TRAINING

Performance benefits in single (+1–5%) and repeated bouts (+5–15%) of high-intensity exercise of <150 s. Most pronounced effects during tasks of <30 s

Improves the chronic outcomes of resistance training programs with greater gains in lean mass and muscular strength and power

Less benefits are reported for endurance sport athletes because supplementation is frequently reported to result in a 1–2 kg increase to body mass after the "loading-phase" due to water retention

PROTOCOL

LOADING PHASE

4x 5-g doses per day for 5–7 days

MAINTENANCE PHASE

3-5-g per day

No negative health effects of the long-term use of creatine monohydrate (up to 4 years) when appropriate loading protocols are followed

Beta-Alanine

HOW DOES IT WORK?

Beta-alanine augments intracellular buffering capacity, having potential beneficial effects on sustained high-intensity exercise performance

- Daily supplementation of beta-alanine increases skeletal muscle carnosine content
- ... the immediate defense against proton accumulation in the contracting musculature

PERFORMANCE

Small but potentially meaningful performance benefits (\sim 0.2–3%) during both continuous and intermittent exercise tasks of 30 s to 10 min in duration

PROTOCOL

~65 mg/kg body mass / day (i.e., 0.8–1.6 g every 3–4 hr)

10–12 weeks

Less effective in well-trained athletes

Possible negative side effects include skin rashes and/or transient paresthesia

Sodium Bicarbonate

How does it work?

Acts as an extracellular (blood) buffer, aiding intracellular pH regulation by raising the extracellular pH, and HCO3- concentrations

Performance

Enhanced performance (\sim 2%) of short-term, high-intensity sprints lasting \sim 60 s in duration, with a reduced efficacy as the effort duration exceeds 10 min

PROTOCOL

- Single acute NaHCO3 dose of 0.2–0.4 g/kg body mass, consumed 60–150 min prior to exercise
- Ż Or split doses taken over a 30–180 min time period
- **3** Or serial-loading with 3–4 smaller doses per day for 2–4 consecutive days prior to an event

Gastro-intestinal distress

To minimize gastro-intestinal upset:

- Co-ingest with a small, carbohydraterich meal
- Use sodium citrate as an alternative
- C Split-dose or stacking strategies

Thorough investigation into the best individualized strategy is recommended prior to use in a competition setting

- Proposed benefits
 - Enhanced efficiency of mitochondria
 - Enhanced function of fast-twitch muscle fibers
 - Increased blood flow to the muscle
- Improvements
 - 1-3% in events < 40 minutes
 - 3-5% in high-intensity exercise; 12-40 minutes
- High nitrate-containing foods
 - Spinach, arugula, celery, beetroot

Vitamin D

- RDA = 600 IU/d
- \uparrow response to exercise
- \downarrow stress fractures

- \downarrow upper respiratory tract infections
- Consult with a physician, dietician or nutritionist

- Improvement in athletes prone to GI tract problems
- Travelling to regions in which GI disturbances are more likely
- Supplementation needs to begin well ahead of competition

POTENTIAL RESEARCH-PROVEN AND ERGOGENIC SUPPLEMENTS FOR ROAD CYCLING

Reference: by JP Morton & JM Fell, Aspire Sport Medicine Journal, 2016

Questions About Supplements

Vegan Athletes

- Energy/Calories
- Protein
- B12
- Iron
- Zinc
- Calcium
- Iodine
- Vitamin D
- Omega-3 Fatty Acids

- Vegans generally consume less energy than omnivores
- Decreased protein intake
- Decreased fat intake
- Increased fiber intake

- Athletes require more protein than the average person
- Incomplete proteins
- Contain less BCAAs

Table 2 High Protein Foods

Food	Protein per 100 g ^a
Pumpkin seeds (dried, uncooked)	30.2
Lentils (red, split, uncooked)	24.6
Black beans (uncooked)	21.6
Almonds (raw)	21.2
Tempeh	20.3
Tofu (calcium set)	17.3
Oats (rolled)	16.9
Quinoa (uncooked)	14.1

^aData from USDA food composition database SR28

Omega-3 Fatty Acids

- No marine-based fats
- Increase nitric oxide production
- Improve heart rate variability

- Vegan-Friendly Omega-3 Sources
 - Flax seed
 - Walnuts
 - Chia
 - Microalgae-oil supplement

- Absence of animal and dairy products
- No other naturally-occurring, B-12 rich foods
- B12 supplement or fortified foods (i.e. plant-based milks)

- Vegans consume the same amount of iron as omnivores
- Less bioavailability from plant-based sources
- Female are susceptible to iron-deficiency anemia

- Vegan-Friendly Iron Sources
 - Legumes
 - Grains
 - Nuts
 - Seeds
 - Green vegetables

- Zinc is widely available in plant-based foods
- Poor absorption into the body
- Low zinc availability is rarely a concern for vegans

- Vegan-Friendly Sources of Zinc
 - Beans
 - Nuts
 - Seeds
 - Oats
 - Wheat Germ
 - Nutritional Yeast

- Vegans consume less calcium than vegetarians and omnivores
- Increased risk of fracture
- Important during childhood
- Oxalate impede calcium absorption

- Vegan-Friendly Calcium Sources
 - Tofu (calcium set)
 - Fortified milks and juices
 - Kale
 - Broccoli
 - Sprouts
 - Cauliflower
 - Bok Choy

- Vegans can have low iodine levels
- Vegans that eat a lot of seaweed can actually be at an increased risk of elevated iodine levels

- Vegan-Friendly Iodine Sources
 - Seaweed
 - Cranberries
 - Potatoes
 - Prunes
 - Navy Beans
 - Iodized Salt

- Exposure to the sun
- Fortified-Food (i.e. milk)
- Vitamin D3 (cholecalciferol)
- Fungal-algae D3

- Website: drchrisgrant.com
- Instagram: @drchrisgrant
- Facebook: Dr. Chris Grant

SUPPLEMENTS: WHAT DOES REALLY WORK?

ENDURANCE

Caffeine Carbohydrate Gels/drinks **Beta-alanine Beetroot Juice Bicarb/Citrate** Antioxidants

Tourine, Cherry Active, L-Carnitine

Methylhaxanemine Herbal Supplements Citruline Malate L-Arginine Synephrine

Ephedrine

Probiotics Electrolytes Vitamin D HEALTH

Magnesium Herbal Supplements

Vitamin C, Multi Vitamin, Glucosamine, Quercetin, Glutamine, Fish Oil, Collagen

STRENGTH/SIZE

Strong evidence of a performance effect

Moderate or emerging evidence

Lack of evidence, high risk of contamination and/or currently prohibited by WADA

Designed by @YLMSportScience

Beta-hydroxy Betamethyl-butyrate (HMB)

3 g/d

 Enhanced lean mass, strength, and adaptation to exercise via decreased muscle protein breakdown,
 Reduced DOMS

Cannot be confidently recommended , to athletes. Effects may be no more effective than adhering to the current protein intake recommendations

Omega 3-Fatty Acids

2 g/d

- Improved cognitive processing,
- Decreased risk/enhanced recovery from mild
- traumatic brain injury,
- Reduced DOMS

Low risk but unclear if supplementation should be pursued by athletes, in lieu of including fatty fish in the diet as a source of omega-3 fatty acids

Gelatin and vitamin C/collagen

5 to 15 g gelatin w/50 mg vitamin C Collagen hydrolysate dose ~10 g/d

Few data are available but these supplements may increase collagen production, thicken cartilage and decrease knee pain

Curcumin supplements & Tart cherry juice

Anti-inflammatory effects,
 Reduced DOMS,
 Benefits may be sport/training specific

More research needs to be conducted before these compounds could be recommended to athletes

LOW CARBOHYDRATE, HIGH FAT DIET IMPAIRS PERFORMANCE IN WORLD-CLASS ENDURANCE ATHLETES

Reference: LM Burke et al, J Physiol, december 2016

This study investigated the effects of adaptation to three diets during 3 wk of intensified training on metabolism and performance of world-class endurance athletes

Designed by @YLMSportScience

Results

- VO2peak during race walking increased in all groups
- 2 LCHF was associated with markedly increased rates of whole-body fat oxidation

HOWEVER

- 3 LCHF also increased the oxygen cost of race walking at velocities relevant to real-life race performance
- HCHO and PCHO groups improved times for 10 km race walk with no improvement for the LCHF group

In contrast to training with diets providing chronic or periodised high-CHO availability, and despite a significant improvement in VO2peak, adaptation to the topical LCHF diet negated performance benefits in elite endurance athletes, in part, due to reduced exercise economy

Dietary Meal Plans Provided to a Premier League Soccer Player During Rehabilitation From ACL Injury

Immobilization Phase

Rehabilitation Phase

Breakfast	3 egg omelet (ham + tomato + cheese) + 400 ml semiskimmed milk + 1 multivitamin + 500 mg vitamin C + 1 g fish oil + 1.5 g HMB	1 × bowl muesli + 250 ml semiskimmed milk) + 2 × slices wholemeal toast + 3 poached eggs + 350 ml apple juice + 1 multivitamin + 1 g fish oil + 1.5 g HMB
10 am	30 g whey / casein protein supplement + 5 g creatine monohydrate	25 g whey / casein protein supplement + 5 g creatine monohydrate
1 pm	2 × chicken fajita wraps (incl. salsa, peppers, onions, mushrooms, etc.) & mixed salad (e.g. lettuce, tomato, cucumber) + 1 g fish oil	Chicken filet + sweet potatoes + mixed vegetables (e.g. roasted carrots and parsnips) + 350 ml apple juice + natural yogurt + mixed berries + 1 g fish oil
4 pm	30 g whey / casein protein supplement + 5 g creatine monohydrate	25 g whey protein + 50 g CHO recovery shake + 50 g CHO energy bar
7 pm	Salmon filet + basmati rice + broccoli + 1 g fish oil	Filet steak + mixed salad (e.g. tomato, mushrooms, spinach) + potato wedges + 350 ml apple juice + 1 g fish oil
Approx 30–60 min efore sleep	30 g whey/casein protein supplement + 1.5 g HMB	30 g whey / casein protein supplement + 1.5 g HMB
	1970 kcal: 140 g carbs, 195 g protein, 70 g Fat	3170 kcal: 400 g carbs; 190 g protein, 90 g Fat

Reference: by Jordan Milsom et al. IJSNEM 2014

Designed by @YLMSportScience

Carbohydrate Intake

- General fueling (< 90 min. of exercise)
 - 7-12 g/kg/day
- Carbohydrate Loading
 - 36-72 hours before
 - 10-12 g/kg/d
- Speedy Refueling (< 8 hours between sessions)
 - 1-1.2 g/kg/h for the first 4 hours
 - Small, regular snacks
- Pre-event fueling (> 60 minutes)
 - 1-4 g/kg consumed 1-4 hours before exercise
 - Avoid high fat, protein and fiber